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Abstract:  This paper presents an automatic approach to detect 
epileptiform discharges (ED) in electroencephalogram (EEG). 
On the algorithm we utilized back-propagation artificial neural 
network (BPN) to detect ED. We train BPN respectively for each 
patient and induce parameter k to determine a threshold value. 
The result shows that the algorithm can determine presence or 
absence of ED automatically, and decrease the false 
determination in current automated approaches as well.  
Keywords: Epileptiform discharges  (ED), back-propagation 
network (BPN), electroencephalogram (EEG) 
  

I INTRODUCTION 

  Electroencephalogram (EEG) is utilized to diagnose 
epilepsy by determining the presence or absence of 
epileptiform discharges (ED). Some improvements have been 
achieved in automated detection of ED, primarily through 
ruled-based approaches (Gotman et al [1], Frost Webber et 
al[2], etc) and BPN-based approaches (Eberhart et al, Gabor 
and Seyal [3]; Webber et al.[8], Zhang  et al, etc).  But these 
approaches produce false interpretation in a high proportion. 

ED patterns of epilepsy�s EEG are of variances, and 
change frequently even if for the same patient. Obviously, it 
is not the best way to detect ED for different patient by the 
same BPN trained. Experiments demonstrated that the cross 
recognition method has a low detection rate, which detect 
epileptiform discharges (ED) of the other epileptic�s EEG by 
the same basic-BPN trained. But the cross recognition 
method can be applied in our algorithm for preliminary 
automatic detection  

We proposed an automatic detection algorithm, based on 
Gabor�s BPN method. This algorithm detects ED and picks 
out ED pattern of patient by the cross recognition method 
firstly. Then if ED is detected, pick out the ED pattern of this 
patient and its characteristic, train the BPN for this patient by 
its characteristic. Finally, we utilize this BPN to detect the ED 
of patient himself. 

 In this algorithm, the relationship between number of 
peaks and value of peaks can be fitted to a power function 
curve from the output curve of BPN, and then parameter k is 
derived from the power function curve. Experiments showed 
that parameter k could be used to determine a threshold value 
for detection of ED in EEG automatically. 

Because we trained the BPN respectively for each patient 
by inputting their ED pattern characteristic automatically, the 
false positive interpretation and the false negative 
interpretation can be expected to decrease. 

 
II METHODOLGY AND SYSTEM 

A. Recording 
 

 The electronic polar montage is 10-20 international 
system, and 16-channels scalp recording. A filter was applied 
to remove possible noise that lies the above 60Hz and below 
0.3Hz frequency. Sampling frequency is 200 times/second, 
and each recording time is about 520 seconds. 

Recordings for training basic BPN were interpreted by the 
expert doctor and were divided three categories: with ED, 
without ED, recheck or with few ED. The interpretation was 
regarded as the standard of the automated analysis. 
 
B.  Procedure 

 
First, a segment of patient�s EEG is inputted to the basic 

BPN to determine whether or not ED is included. Then if ED 
included, a threshold value would be estimated in order to 
pick out ED pattern better. We train the BPN based on the 
characteristic of the selected ED pattern, and then recalculate 
the threshold value based on parameter k.  At last ED of 
patient�s EEG can be automatically detected by the BPN, 
with the threshold value. 

Fig.1. Flow chart of algorithm 

 

C.  BPN 

 
The BPN used to analyze EEG recordings is based on 

Gabors�[7]. The BPN consists of two sub-BPNs, and each sub-
BPN consists of three layers: input layer of 16 nodes, hidden 
layer of 16 nodes, and output layer of 1 node. The error 
function is set to be 0.01, learn fact 0.01, and momentum fact 
0.05. The stand multiple between ED pattern and non-ED 
pattern is ten. Each node of the input and the hidden layer has 
connections with all of the nodes of the next layer. There are 

Pick out ED pattern and their characteristic

ED detected by the basic-BPN Trained

Thresholding No ED

A new BPN for this patient
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no direct connections between input layer and output layer or 
among the nodes of the same layer. The output of the BPN 
was the average of the two sub-BPN outputs. 

We take the variant rate of peak as the characteristic. Input 
of the sub-BPN separate is the 16 channels EEG variant rate 
before the peak and behind the peak .The BPN output value 
of ideal ED is equal to 1, and that of non-ED is equal to 0, so 
the output value of BPN is between 0 and 1. 

We select a trained BPN having high recognition rate in 
order to detect all patients� ED pattern, which be called basic-
BPN. 

 
D. ED pattern and ED pattern characteristic 
 

The expert doctor selects the ED pattern needed by training 
basic BPN from classic ED wave, while the other ED patterns 
are detected and specified by basic BPN.  If the output value 
of self-trained BPN is higher than the threshold value, ED is 
detected.  

We assigned the sharpness as ED characteristic.  As ED 
pattern has picked out, computer look for its peak, left valley 
and right valley.   After site of ED has been ensured, 
computer calculates the character parameters of ED, which 
are represented by amplitude-varied rate. Because the width 
of half peak of ED pattern is different on the same epilepsy 
EEG, The computer calculates the average half peak width as 
in (1). 

 

where lw′  represents left half peak average width, and rw '
 

represents right half peak average width. And lpw represents 
the left half peak width of the No. p ED pattern. Computer 
calculates the amplitude-varied rate of each ED pattern 
according to average width as in the equation (2). 
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where ripv  represents amplitude varied rate of  the i channel 
EEG  on the time from peak to right valley. 
 
E. Calculating the threshold by parameter k 
 

When recognition using BPN, the 16 channels EEG data 
were input to the basic-BPN, the output values varied with 
time are got, and a recognition curve is formed. Seek the peak 

value of the output curve, count the total of every peak value, 
and then obtain a curve of the number of the recognition peak 
value varied with the output value. We call it the curve of the 
BPN output peak value distribution of recognition (shown in 
fig. 2). We detect ED from this curve by the cross recognition 
on the first recognition step.  

The BPN output peak value distribution curve (OPVDCR) 

was fitted with function  
(3)               )( BxkAy −=                     

where x stands for peak value, y stands for counts of peak 
value, k stands for the highest peak value when y equals to 0.  
    We calculate threshold value by analysis of parameter k of 
non-ED and ED curves. We regard the parameter k of non-
ED as the threshold value. On the first step of recognition, 
parameter k is obtained from basic-BPN. During the self-
detection, the parameter k can be obtained from this curve of 
self-trained BPN. 

Fig. 2  The OPVDCR and the curve fitted of patient B, C, and  D. 

 

III RESULT 

 
1) The relationship between parameter k and EEG with or 

without ED 
There is a peak in every curve of the BPN output peak 

value distribution of recognition. When no ED in EEG, the 
position of the peak is high and closes to the right side; when 
ED in EEG, the position of the peak is low and close to the 
left side. In order to analyze this curve, we select the 
parameter k. Set if k>0.89, then k=0.89. The parameter k of 
41 recordings is shown in Fig. 2. 

 Fig. 3 shows that parameter k of EEG with ED is more 
than that of EEG without ED. If the result 77.0≥k , ED 
might be present in EEG. If 72.0≤k , ED might be absent 
in EEG. If 76.073.0 ≤≤ k , EEG might be on the edge of 
presenting ED, or maybe has few ED, or incline to produce 
ED, in general, those need recheck or prolong the recording 
time. 
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Fig.3 The curve of parameter k distribute of 41 recordings 

� stands for k of EEG with ED � stands for k of EEG without ED 

     
Results also show that parameter k can eliminate interfere 

of artifacts. Table 1 shows the effect of artifacts to parameter 
k. 

TABLE 1 

 The effect of artifacts on parameter k of three recordings. 

k                    Patients B C D 

No artifacts eliminated 0.84 0.70 0.68 

Artifacts eliminated manually 0.83 0.69 0.67 

Artifacts eliminated 

automatically 

0.84 0.70 0.68 

 
 

2) Compare automatic detection result with doctor-joint 
detection result  

During recognizing ED of patient A B C, Table 2 shows 
our method is close to the method of doctor-joint setting 
threshold. 

Parameter k changed 0.01 if artifacts were not eliminated. 
It is much lower than the variance of 0.05 for the parameter k 
between EEG with ED and EEG without ED. So parameter k 
can determine presence or absence of ED in EEG despite 
artifacts. 
 

TABLE 2  

Results of recognition of doctor-joint and automation 
 Patient A Patient B 
 Automate 

method 

Doctor-

joint 
Automate 

method 

Doctor-

joint 

Recognition rate 94.6 93.2 90.0 90.0 

False positive rate 11.8 7.2 11.8 11.8 

 
IV DISSCUSION 

 
1) Because the ED pattern of each patient is much deferent 

from each other, the BPN trained by one patient ED pattern is 
not fit for another patient. 
   The advantage of our method is that we train BPN for each 
patient separately in order that EEG include ED of each 
patient might get a respective BPN. So we can recognize ED 

according to patient himself.  Recognition to each patient is 
self-recognition.   High recognition rate is expected to during 
the large number of clinical interpretation by using this 
method. 

 
2) Experiments indicated that parameter k is a significant 

parameter for determination despite non-ED such as artifacts. 
Parameter k shows the fact that ED pattern can make trained 
BPN output higher value than non-ED pattern. Of course, 
false recognition will exist. But the experiments show that 
false positive rate is about ten percents and recognition rate is 
over ninety percents. 

 
3) This algorithm can eliminate artifacts as well. Many 

artifacts such as eye blinks, electrode and movement artifacts 
or EMG, cause difficulty to the automated detection of ED. 
They are various and some similar to ED. It is difficult to 
eliminate all artifacts.  

In the first recognition step, during cross recognize EEG, 
artifacts those spatial context are not similar to ED can be 
eliminated. The rest artifacts can be eliminated based on the 
difference characters from ED because the kinds of artifacts 
decrease largely after the cross recognition. Then artifacts 
remain few.  
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